A HIGH-NUCLEAR CARBONYLPHOSPHINE CLUSTER OF PALLADIUM, $\mathrm{Pd}_{23}(\mathrm{CO})_{22}\left(\mathrm{PEt}_{3}\right)_{10}$

E.G. MEDNIKOV, N.K. EREMENKO,
Institute of Coal, Siberian Branch of USSR Academy of Sciences, 18 Sovetskii Ave., Kemerovo-53, 650053 (U.S.S.R.)
Yu.L. SLOVOKHOTOV and Yu.T. STRUCHKOV*
A.N. Nesmeyanov Institute of Organoelement Compounds, USSR Academy of Sciences, 28 Vavilov St., Moscow (U.S.S.R.)

(Received October 5th, 1985)

Summary

Reactions of palladium derivatives in combination with phosphine ligands make possible the production of new species of high nuclearity. Here both the production and further characterization of a new high-nuclear cluster, $\mathrm{Pd}_{23}(\mathrm{CO})_{22}\left(\mathrm{PEt}_{3}\right)_{10}$ is described.

Under mild conditions zerovalent palladium derivatives are able to form Pd_{n} clusters with a carbonyl-phosphine ligand shell and a nuclearity n varying between 3 and $10[1-5]$. The largest structurally characterized clusters of this type, viz. $\mathrm{Pd}_{7}(\mathrm{CO})_{7}\left(\mathrm{PMe}_{3}\right)_{7}$ [2], $\mathrm{Pd}_{10}(\mathrm{CO})_{12}\left(\mathrm{PBu}_{3}\right)_{6}$ [3] and $\mathrm{Pd}_{10}(\mathrm{CO})_{14}-$ $\left(\mathrm{PBu}_{3}\right)_{4}$ [4] are built up on the basis of Pd_{6} octahedron with either one or four $\operatorname{Pd}(\mu-\mathrm{CO})_{2} \mathrm{~L}$ asymmetrically capping units ($\mathrm{L}=$ phosphine). The mechanism of enlargement of carbonylphosphine clusters of Pd and the corresponding transformations " Pd_{1-4} " \rightarrow " Pd_{10} " were reported earlier [3,5].

In order to obtain a species with a still higher nuclearity we chose $\mathrm{Pd}(\mathrm{OAc})_{2}$ as the acceptor of phosphine ligand ($\mathrm{AcO}=\mathrm{MeCOO}$). Through its reaction with $\mathrm{Pd}_{10}(\mathrm{CO})_{12}\left(\mathrm{PEt}_{3}\right)_{6}$ under argon at room temperature the new high-nuclear $\mathrm{Pd}_{23}(\mathrm{CO})_{22}\left(\mathrm{PEt}_{3}\right)_{10}$ cluster (I) was obtained. The synthetic route was as follows: a solution of $21.3 \mathrm{mg} \mathrm{Pd}(\mathrm{OAc})_{2}(0.095 \mathrm{mmol})$ in benzene (6 ml) and then 2 ml of heptane were added to $\operatorname{Pd}_{10}(\mathrm{CO})_{12}\left(\mathrm{PEt}_{3}\right)_{6}$ [1] ($\left.0.2 \mathrm{~g}, 0.095 \mathrm{mmol}\right)$. The reaction mixture was first left to stand for a day under pentane vapour, then a small amount of the black precipitate was filtered off and the solution was then left under pentane vapour for a longer time. After 4 days black
twinned crystals were separated and washed with pentane, yield 0.055 g (31%). Found: Pd, 58.29; P, 7.32. $\mathrm{C}_{82} \mathrm{H}_{150} \mathrm{O}_{22} \mathrm{P}_{10} \mathrm{Pd}_{23}$ calcd.: Pd, 57.65; P, 7.30\%. IR (cm^{-1}) (Nujol): $1863 \mathrm{~s}, 1847 \mathrm{sh}, 1823 \mathrm{sh}$.

Plate-like crystals of I suitable for an X-ray study were isolated from the crystalline product obtained in a modified experiment with a mixture of acetone (7 ml) and $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml})$ as the solvent and without any hydrocarbon component, the reaction time was limited to 2 days. A single crystal of I was placed under argon in a sealed Lindemann glass capillary. Intensities of 4281 unique reflections were measured with a Hilger \& Watts Y/290 diffractometer at room temperature ($\lambda \mathrm{Mo}-K_{\alpha}, \theta / 2 \theta$ scan up to $2 \theta=54^{\circ}$), 3738 non-zero reflections (with $I>2 \sigma$) were used in calculations. Crystals of I are monoclinic, a 18.492(2), b 16.518(2), c 19.468(2) \AA, β 93.59(1) ${ }^{\circ}, V$ $5935(1) \AA^{3}$, space group $P 2_{1} / n, Z=2$. The structure was solved by direct method using a MULTAN program and refined by the block-diagonal least squares technique in isotropic(C,O)-anisotropic(Pd,P) approximation. Final $R=$ 0.071 .

Fig. 1. The Pd_{23} metallapolyhedron (cuboctahedral moiety in bold lines). PEt_{3} ligands are coordinated to Pd(7), $\operatorname{Pd}(8), \operatorname{Pd}(9), \operatorname{Pd}(10), \operatorname{Pd}(11)$ atoms and those related by inversion. Interatomic distances in the polyhedron: $\operatorname{Pd}(0)-\operatorname{Pd}(1) 2.796, \operatorname{Pd}(0)-P d(2) 2.700, \operatorname{Pd}(0)-\operatorname{Pd}(3) 2.864, \operatorname{Pd}(0)-\operatorname{Pd}(4) 2.897$, $\operatorname{Pd}(0)-\operatorname{Pd}(5) 2.919, \operatorname{Pd}(0)-\operatorname{Pd}(6) 2.907, \operatorname{Pd}(1) \cdot \operatorname{Pd}\left(3^{\prime}\right) 2.916, \operatorname{Pd}(1)-\operatorname{Pd}\left(4^{\prime}\right) 2.862, \operatorname{Pd}(1)-\operatorname{Pd}(5) 2.936$,
 $\operatorname{Pd}(2)-\operatorname{Pd}(5) 2.779, \operatorname{Pd}(2)-\operatorname{Pd}\left(6^{\prime}\right) 2.839, \operatorname{Pd}(2)-\operatorname{Pd}(8) 2.855, \operatorname{Pd}(2)-\operatorname{Pd}\left(9^{\prime}\right) 2.784, \operatorname{Pd}(3)-\operatorname{Pd}(4) 2.937$. $\operatorname{Pd}(3)-\operatorname{Pd}(6) 2.785, \operatorname{Pd}(3)-\operatorname{Pd}(7) 2.803, \operatorname{Pd}(3)-\operatorname{Pd}(8) 2.828, \operatorname{Pd}(3)-\operatorname{Pd}(10) 2.738, \operatorname{Pd}(4)-\operatorname{Pd}(5) 2.815$, Pd(4)-Pd(7) 2.811, $\operatorname{Pd}(4)-\operatorname{Pd}\left(9^{\prime}\right) 2.779, \operatorname{Pd}(4)-P d(10) 2.734, ~ P d(5)-P d(6) 2.920, ~ P d(5)-P d(7) 2.807$, Pd(5)—Pd(8) 2.856, $\operatorname{Pd}(5)-\operatorname{Pd}(11) 2.720, \operatorname{Pd}(6)-P d(7) 2.795, \operatorname{Pd}(6)-P d(9) 2.907, \operatorname{Pd}(6)-P d(11)$ 2.726 A. E.s.d. $0.003-0.005$ A. Pd-P 2.28-2.35 A, e.s.d. 0.01 A. Positions of CO ligands are marked by crosses.

The metal polyhedron of the centrosymmetric molecule I (Fig. 1) includes the closed packed metal atoms fragment, i.e. the body- and edge-centered octahedron Pd_{19}, whose vertices are occupied by the atoms $\operatorname{Pd}(7), \operatorname{Pd}(8), \operatorname{Pd}(9)$ and those related by the symmetry center, and the midpoints of all edges occupied by the atoms $\operatorname{Pd}(1)-\operatorname{Pd}(6)$ and also those related by inversion. In molecule I this polyhedron ("large octahedron", by analogy with the M_{10} "large tetrahedron" in such clusters as $\left[\mathrm{Os}_{10} \mathrm{C}(\mathrm{CO})_{24}\right]^{2-}[6]$ or $\mathrm{Pd}_{10}(\mathrm{CO})_{12}\left(\mathrm{PBu}_{3}\right)_{6}$ [3]) is complemented by four non-closed $\mathrm{Pd}(\mu-\mathrm{CO})_{2} \mathrm{PEt}_{3}$ capping moieties (Pd atoms with numbers 10, 10', 11 and 11' in Fig. 1) with the resulting reduction of the symmetry of the Pd_{23} framework from O_{h} to $D_{2 h}$. Thus, the latter atoms form the open caps on the faces of the large octahedron of I, resembling asymmetric caps of a Pd_{6} octahedron in the earlier studied structures of $\mathrm{Pd}_{10}(\mathrm{CO})_{12} \mathrm{~L}_{6}$ and $\mathrm{Pd}_{10}(\mathrm{CO})_{14} \mathrm{~L}_{4}\left(\mathrm{~L}=\mathrm{PBu}_{3}\right.$, vide supra). However, in I the planes of Pd_{3} triangles in the caps (e.g. $\operatorname{Pd}(10) \operatorname{Pd}(3) \operatorname{Pd}(4)$) are perpendicular to the faces of the large octahedron, thus resulting in almost equal non-bonded distances $\operatorname{Pd}(7) \cdots \operatorname{Pd}(10$, 11) (3.381, $3.455 \AA$) and $\operatorname{Pd}(1) \cdots \operatorname{Pd}(10,11)$ (3.357, $3.344 \AA$), respectively. All vertices of the large octahedron and all capping atoms are coordinated by PEt_{3} ligands. There are also 14μ-CO and $8 \mu_{3}$-CO ligands in I (indicated in Fig. 1 by crosses).

The Pd_{23} cluster in I may also be regarded as a centered cuboctahedron with six caps on all square faces, complemented by four open caps. This cuboctahedron of idealized O_{h} symmetry is shown in Fig. 1 by bold lines. The $\mathrm{Pd}-\mathrm{Pd}$ bond distances in this polyhedron show no differences between "center(i.e. Pd(0))-peripheral" (av. 2.847) and "peripheral-peripheral" (av. $2.849 \AA$) interactions. All the other bonding distances in the large octahedron also have these close values ($2.779-2.920 \AA$). The non-bonding distances from the large vertices to the $\operatorname{Pd}(0)$ atom are equal to $3.969-4.017 \AA$, and the distances from the capping atoms to atoms of the large octahedron (those bridged by μ-CO ligands) vary from 2.720 to $2.738 \AA$ (av. $2.730 \AA$).

In contrast to high-nuclear rhodium clusters, built up mainly on the basis of a less symmetric twinned cuboctahedron ($D_{3 h}$), and thus corresponding to hexagonal close packing (h.c.p.), the metal polyhedron in I corresponds to a cubic close packing (c.c.p.), typical of Pd and Pt metals [7]. Therefore, the highnuclear cluster I can be considered as a fragment of the crystal lattice of the corresponding metal (contrasting, for example with the $\left[\mathrm{Pt}_{26}(\mathrm{CO})_{32}\right]^{2-}$ h.c.p. cluster, but similar to the larger c.c.p. truncated octahedral cluster $\left.\left[\mathrm{Pt}_{38}(\mathrm{CO})_{44} \mathrm{H}_{\mathrm{x}}\right]^{2-}[7]\right)$. It is noteworthy that the average $\mathrm{Pd}-\mathrm{Pd}$ distance in the large Pd_{19} octahedron of $\mathrm{I}(2.836 \AA$) is still considerably longer, than the shortest interatomic distance in the metal bulk ($2.751 \AA$), probably due to the antibonding influence of the ligand shell on the metal cluster core.

References

[^0]
[^0]: 1 E.G. Mednikov and N.K. Eremenko, Koord. Khim., 9 (1983) 243 (In Russian).
 2 R. Goddard, P.W. Jolly, C. Krüger, K.-P. Schick and G. Wilke, Organometallics, 1 (1982) 1709.
 3 E.G. Mednikov, N.K. Eremenko, S.P. Gubin, Yu.L. Slovokhotov and Yu.T. Struchkov, J. Organomet. Chem., 239 (1882) 401.
 4 E.G. Mednikov, N.K. Eremenko, Yu.L. Slovokhotov, Yu.T. Struchkov and S.P. Gubin, J. Organomet. Chem., 258 (1983) 247.
 5 E.G. Mednikov and N.K. Eremenko, Izv. Akad. Nauk SSSR, Ser. Khim., (1984) 2781 (in Russian).
 6 P.F. Jackson, B.F.G. Johnson, J. Lewls, M. McPartlin and W.J.H. Nelson, Chem. Commun., (1980) 224.
 7 P. Chini, J. Organomet. Chem., 200 (1980) 37.

